Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Acta Pharm Sin B ; 14(4): 1801-1813, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572105

ABSTRACT

Antimicrobial resistance (AMR) has become a global health crisis in need of novel solutions. To this end, antibiotic combination therapies, which combine multiple antibiotics for treatment, have attracted significant attention as a potential approach for combating AMR. To facilitate advances in antibiotic combination therapies, most notably in investigating antibiotic interactions and identifying synergistic antibiotic combinations however, there remains a need for automated high-throughput platforms that can create and examine antibiotic combinations on-demand, at scale, and with minimal reagent consumption. To address these challenges, we have developed a Robotic-Printed Combinatorial Droplet (RoboDrop) platform by integrating a programmable droplet microfluidic device that generates antibiotic combinations in nanoliter droplets in automation, a robotic arm that arranges the droplets in an array, and a camera that images the array of thousands of droplets in parallel. We further implement a resazurin-based bacterial viability assay to accelerate our antibiotic combination testing. As a demonstration, we use RoboDrop to corroborate two pairs of antibiotics with known interactions and subsequently identify a new synergistic combination of cefsulodin, penicillin, and oxacillin against a model E. coli strain. We therefore envision RoboDrop becoming a useful tool to efficiently identify new synergistic antibiotic combinations toward combating AMR.

2.
ACS Nano ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669469

ABSTRACT

Early detection of cancer is critical to improving clinical outcomes, especially in territories with limited healthcare resources. DNA methylation biomarkers have shown promise in early cancer detection, but typical workflows require highly trained personnel and specialized equipment for manual and lengthy processing, limiting use in resource-constrained areas. As a potential solution, we introduce the Automated Cartridge-based Cancer Early Screening System (ACCESS), a compact, portable, multiplexed, automated platform that performs droplet magnetofluidic- and methylation-specific qPCR-based assays for the detection of DNA methylation cancer biomarkers. Development of ACCESS focuses on esophageal cancer, which is among the most prevalent cancers in low- and middle-income countries with extremely low survival rates. Upon implementing detection assays for two esophageal cancer methylation biomarkers within ACCESS, we demonstrated successful detection of both biomarkers from esophageal tumor tissue samples from eight esophageal cancer patients while showing specificity in paired normal esophageal tissue samples. These results illustrate ACCESS's potential as an amenable epigenetic diagnostic tool for resource-constrained areas toward early detection of esophageal cancer and potentially other malignancies.

3.
Anal Chim Acta ; 1297: 342371, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438240

ABSTRACT

BACKGROUND: Bacterial infections, especially polymicrobial infections, remain a threat to global health and require advances in diagnostic technologies for timely and accurate identification of all causative species. Digital melt - microfluidic chip-based digital PCR combined with high resolution melt (HRM) - is an emerging method for identification and quantification of polymicrobial bacterial infections. Despite advances in recent years, existing digital melt instrumentation often delivers nonuniform temperatures across digital chips, resulting in nonuniform digital melt curves for individual bacterial species. This nonuniformity can lead to inaccurate species identification and reduce the capacity for differentiating bacterial species with similar digital melt curves. RESULTS: We introduce herein a new temperature calibration method for digital melt by incorporating an unamplified, synthetic DNA fragment with a known melting temperature as a calibrator. When added at a tuned concentration to an established digital melt assay amplifying the commonly targeted 16S V1 - V6 region, this calibrator produced visible low temperature calibrator melt curves across-chip along with the target bacterial melt curves. This enables alignment of the bacterial melt curves and correction of heating-induced nonuniformities. Using this calibration method, we were able to improve the uniformity of digital melt curves from three causative species of bacteria. Additionally, we assessed calibration's effects on identification accuracy by performing machine learning identification of three polymicrobial mixtures comprised of two bacteria with similar digital melt curves in different ratios. Calibration greatly improved mixture composition prediction. SIGNIFICANCE: To the best of our knowledge, this work represents the first DNA calibrator-supplemented assay and calibration method for nanoarray digital melt. Our results suggest that this calibration method can be flexibly used to improve identification accuracy and reduce melt curve variabilities across a variety of pathogens and assays. Therefore, this calibration method has the potential to elevate the diagnostic capabilities of digital melt toward polymicrobial bacterial infections and other infectious diseases.


Subject(s)
Bacterial Infections , Oligonucleotides , Humans , Calibration , Temperature , DNA
4.
Antibiotics (Basel) ; 12(11)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37998843

ABSTRACT

Antimicrobial resistance (AMR) is a global threat fueled by incorrect (and overuse) of antibiotic drugs, giving rise to the evolution of multi- and extreme drug-resistant bacterial strains. The longer time to antibiotic administration (TTA) associated with the gold standard bacterial culture method has been responsible for the empirical usage of antibiotics and is a key factor in the rise of AMR. While polymerase chain reaction (PCR) and other nucleic acid amplification methods are rapidly replacing traditional culture methods, their scope has been restricted mainly to detect genotypic determinants of resistance and provide little to no information on phenotypic susceptibility to antibiotics. The work presented here aims to provide phenotypic antimicrobial susceptibility testing (AST) information by pairing short growth periods (~3-4 h) with downstream PCR assays to ultimately predict minimum inhibitory concentration (MIC) values of antibiotic treatment. To further simplify the dual workflows of the AST and PCR assays, these reactions are carried out in a single-vessel format (PCR tube) using novel lyophilized reagent beads (LRBs), which store dried PCR reagents along with primers and enzymes, and antibiotic drugs separately. The two reactions are separated in space and time using a melting paraffin wax seal, thus eliminating the need to transfer reagents across different consumables and minimizing user interactions. Finally, these two-step single-vessel reactions are multiplexed by using a microfluidic manifold that allows simultaneous testing of an unknown bacterial sample against different antibiotics at varying concentrations. The LRBs used in the microfluidic system showed no interference with the bacterial growth and PCR assays and provided an innovative platform for rapid point-of-care diagnostics (POC-Dx).

5.
Anal Chem ; 95(42): 15522-15530, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37812586

ABSTRACT

Digital PCR combined with high resolution melt (HRM) is an emerging method for identifying pathogenic bacteria with single cell resolution via species-specific digital melt curves. Currently, the development of such digital PCR-HRM assays entails first identifying PCR primers to target hypervariable gene regions within the target bacteria panel, next performing bulk-based PCR-HRM to examine whether the resulting species-specific melt curves possess sufficient interspecies variability (i.e., variability between bacterial species), and then digitizing the bulk-based PCR-HRM assays with melt curves that have high interspecies variability via microfluidics. In this work, we first report our discovery that the current development workflow can be inadequate because a bulk-based PCR-HRM assay that produces melt curves with high interspecies variability can, in fact, lead to a digital PCR-HRM assay that produces digital melt curves with unwanted intraspecies variability (i.e., variability within the same bacterial species), consequently hampering bacteria identification accuracy. Our subsequent investigation reveals that such intraspecies variability in digital melt curves can arise from PCR primers that target nonidentical gene copies or amplify nonspecifically. We then show that computational in silico HRM opens a window to inspect both interspecies and intraspecies variabilities and thus provides the missing link between bulk-based PCR-HRM and digital PCR-HRM. Through this new development workflow, we report a new digital PCR-HRM assay with improved bacteria identification accuracy. More broadly, this work can serve as the foundation for enhancing the development of future digital PCR-HRM assays toward identifying causative pathogens and combating infectious diseases.


Subject(s)
Bacteria , Bacteria/genetics , Polymerase Chain Reaction/methods , Transition Temperature
6.
medRxiv ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37292781

ABSTRACT

For the 28.2 million people in the world living with HIV/AIDS and receiving antiretroviral therapy, it is crucial to monitor their HIV viral loads with ease. To this end, rapid and portable diagnostic tools that can quantify HIV RNA are critically needed. We report herein a rapid and quantitative digital CRISPR-assisted HIV RNA detection assay that has been implemented within a portable smartphone-based device as a potential solution. Specifically, we first developed a fluorescence-based reverse transcription recombinase polymerase amplification (RT-RPA)-CRISPR assay for isothermally and rapidly detecting HIV RNA at 42 °C in < 30 min. When realized within a commercial stamp-sized digital chip, this assay yields strongly fluorescent digital reaction wells corresponding to HIV RNA. The isothermal reaction condition and the strong fluorescence in the small digital chip unlock compact thermal and optical components in our device, allowing us to engineer a palm-size (70 × 115 × 80 mm) and lightweight (< 0.6 kg) device. Further leveraging the smartphone, we wrote a custom app to control the device, perform the digital assay, and acquire fluorescence images throughout the assay time. We additionally trained and verified a Deep Learning-based algorithm for analyzing fluorescence images and detecting strongly fluorescent digital reaction wells. Using our smartphone-enabled digital CRISPR device, we were able to detect 75 copies of HIV RNA in 15 min and demonstrate the potential of our device toward convenient monitoring of HIV viral loads and combating the HIV/AIDS epidemic.

7.
Adv Sci (Weinh) ; 10(16): e2206518, 2023 06.
Article in English | MEDLINE | ID: mdl-37039321

ABSTRACT

There remains tremendous interest in developing liquid biopsy assays for detection of cancer-specific alterations, such as mutations and DNA methylation, in cell-free DNA (cfDNA) obtained through noninvasive blood draws. However, liquid biopsy analysis is often challenging due to exceedingly low fractions of circulating tumor DNA (ctDNA), necessitating the use of extended tumor biomarker panels. While multiplexed PCR strategies provide advantages such as higher throughput, their implementation is often hindered by challenges such as primer-dimers and PCR competition. Alternatively, digital PCR (dPCR) approaches generally offer superior performance, but with constrained multiplexing capability. This paper describes development and validation of the first multiplex digital methylation-specific PCR (mdMSP) platform for simultaneous analysis of four methylation biomarkers for liquid-biopsy-based detection of non-small cell lung cancer (NSCLC). mdMSP employs a microfluidic device containing four independent, but identical modules, housing a total of 40 160 nanowells. Analytical validation of the mdMSP platform demonstrates multiplex detection at analytical specificities as low as 0.0005%. The clinical utility of mdMSP is also demonstrated in a cohort of 72 clinical samples of low-volume liquid biopsy specimens from patients with computed tomography (CT)-scan indeterminant pulmonary nodules, exhibiting superior clinical performance when compared to traditional MSP assays for noninvasive detection of early-stage NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Early Detection of Cancer , DNA Methylation/genetics , Polymerase Chain Reaction
8.
Anal Chem ; 95(7): 3873-3882, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36745596

ABSTRACT

Developing assays that combine CRISPR/Cas and isothermal nucleic acid amplification has become a burgeoning research area due to the novelty and simplicity of CRISPR/Cas and the potential for point-of-care uses. Most current research explores various two-step assays by appending different CRISPR/Cas effectors to the end of different isothermal nucleic acid amplification methods. However, efforts in integrating both components into more ideal single-step assays are scarce, and poor-performing single-step assays have been reported. Moreover, lack of investigations into CRISPR/Cas in single-step assays results in incomplete understanding. To fill this knowledge gap, we conducted a systematic investigation by developing and comparing assays that share the identical recombinase polymerase amplification (RPA) but differ in CRISPR/Cas12a. We found that the addition of CRISPR/Cas12a indeed unlocks signal amplification but, at the same time, impedes RPA and that CRISPR/Cas12a concentration is a key parameter for attenuating RPA impediment and ensuring assay performance. Accordingly, we found that our protospacer adjacent motif (PAM)-free CRISPR/Cas12a-assisted RPA assay, which only moderately impeded RPA at its optimal CRISPR/Cas12a concentration, outperformed its counterparts in assay design, signal, sensitivity, and speed. We also discovered that a new commercial Cas12a effector could also drive our PAM-free CRISPR/Cas12a-assisted RPA assay and reduce its cost, though simultaneously lowering its signal. Our study and the new insights can be broadly applied to steer and facilitate further advances in CRISPR/Cas-based assays.


Subject(s)
CRISPR-Cas Systems , Nucleic Acids , CRISPR-Cas Systems/genetics , Nucleotidyltransferases , Recombinases , Biological Assay , Nucleic Acid Amplification Techniques
9.
Anal Chem ; 95(2): 1159-1168, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36562405

ABSTRACT

Point-of-care (POC) HIV viral load (VL) tests are needed to enhance access to HIV VL testing in low- and middle-income countries (LMICs) and to enable HIV VL self-testing at home, which in turn have the potential to enhance the global management of the disease. While methods based on real-time reverse transcription-polymerase chain reaction (RT-PCR) are highly sensitive and quantitatively accurate, they often require bulky and expensive instruments, making applications at the POC challenging. On the other hand, although methods based on isothermal amplification techniques could be performed using low-cost instruments, they have shown limited quantitative accuracies, i.e., being only semiquantitative. Herein, we present a sensitive and quantitative POC HIV VL quantification method from blood that can be performed using a small power-free three-dimensional-printed plasma separation device and a portable, low-cost magnetofluidic real-time RT-PCR instrument. The plasma separation device, which is composed of a plasma separation membrane and an absorbent material, demonstrated 96% plasma separation efficiency per 100 µL of whole blood. The plasma solution was then processed in a magnetofluidic cartridge for automated HIV RNA extraction and quantification using the portable instrument, which completed 50 cycles of PCR in 15 min. Using the method, we achieved a limit of detection of 500 HIV RNA copies/mL, which is below the World Health Organization's virological failure threshold, and a good quantitative accuracy. The method has the potential for sensitive and quantitative HIV VL testing at the POC and at home self-testing.


Subject(s)
HIV Infections , HIV-1 , Humans , Point-of-Care Systems , Viral Load/methods , RNA, Viral/analysis , HIV-1/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
10.
Trends Biotechnol ; 41(1): 120-133, 2023 01.
Article in English | MEDLINE | ID: mdl-35863950

ABSTRACT

Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidics/methods , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical , Biological Assay , Microfluidic Analytical Techniques/methods
11.
Biosensors (Basel) ; 12(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36354487

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has drawn attention to the need for fast and accurate diagnostic testing. Concerns from emerging SARS-CoV-2 variants and other circulating respiratory viral pathogens further underscore the importance of expanding diagnostic testing to multiplex detection, as single-plex diagnostic testing may fail to detect emerging variants and other viruses, while sequencing can be too slow and too expensive as a diagnostic tool. As a result, there have been significant advances in multiplex nucleic-acid-based virus diagnostic testing, creating a need for a timely review. This review first introduces frequent nucleic acid targets for multiplex virus diagnostic tests, then proceeds to a comprehensive and up-to-date overview of multiplex assays that incorporate various detection reactions and readout modalities. The performances, advantages, and disadvantages of these assays are discussed, followed by highlights of platforms that are amenable for point-of-care use. Finally, this review points out the remaining technical challenges and shares perspectives on future research and development. By examining the state of the art and synthesizing existing development in multiplex nucleic acid diagnostic tests, this review can provide a useful resource for facilitating future research and ultimately combating COVID-19.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , COVID-19/diagnosis , Pandemics , Diagnostic Tests, Routine , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
12.
Nat Commun ; 13(1): 5561, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151112

ABSTRACT

Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics. It has been challenging to assess mRNA packaging characteristics in LNPs, including payload distribution and capacity, which are critical to understanding structure-property-function relationships for further carrier development. Here, we report a method based on the multi-laser cylindrical illumination confocal spectroscopy (CICS) technique to examine mRNA and lipid contents in LNP formulations at the single-nanoparticle level. By differentiating unencapsulated mRNAs, empty LNPs and mRNA-loaded LNPs via coincidence analysis of fluorescent tags on different LNP components, and quantitatively resolving single-mRNA fluorescence, we reveal that a commonly referenced benchmark formulation using DLin-MC3 as the ionizable lipid contains mostly 2 mRNAs per loaded LNP with a presence of 40%-80% empty LNPs depending on the assembly conditions. Systematic analysis of different formulations with control variables reveals a kinetically controlled assembly mechanism that governs the payload distribution and capacity in LNPs. These results form the foundation for a holistic understanding of the molecular assembly of mRNA LNPs.


Subject(s)
Lipids , Nanoparticles , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Small Interfering/genetics
13.
Anal Chem ; 94(36): 12481-12489, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36040305

ABSTRACT

Many protein biomarkers are present in biofluids at a very low level but may play critical roles in important biological processes. The fact that these low-abundance proteins remain largely unexplored underscores the importance of developing new tools for highly sensitive protein detection. Although digital enzyme-linked immunosorbent assay (ELISA) has demonstrated ultrahigh sensitivity compared with conventional ELISA, the requirement of specialized instruments limits the accessibility and prevents the widespread implementation. On the other hand, proximity ligation assays (PLA) and proximity extension assays (PEA) show sensitive and specific protein detection using regular laboratory setups, but their sensitivity needs to be further improved to match digital ELISA. To achieve highly sensitive protein detection with minimal accessibility limitation, we develop a magnetic bead-based PEA (magPEA), which posts triple epitope recognition requirement and enables extensive washing for improved sensitivity and enhanced specificity. We demonstrate that the incorporation of magnetic beads into PEA workflow facilitates orders of magnitude sensitivity improvement compared with conventional ELISA, homogeneous PEA, and solid-phase PLA and achieves limits of detection close to that of digital ELISA when using IL-6, IL-8, and GM-CSF as validation. Our magPEA provides a simple approach for highly sensitive protein detection that can be readily implemented to other laboratories and will thus ultimately accelerate the study of the low abundance protein biomarkers in the future.


Subject(s)
Biological Assay , Blood Proteins , Biomarkers , Enzyme-Linked Immunosorbent Assay , Magnetic Phenomena
14.
Sci Rep ; 12(1): 13340, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922529

ABSTRACT

Droplet microfluidics has in recent years found a wide range of analytical and bioanalytical applications. In droplet microfluidics, the samples that are discretized into droplets within the devices are predominantly loaded through tubings, but such tubing-based sample loading has drawbacks such as limited scalability for processing many samples, difficulty for automation, and sample wastage. While advances in autosamplers have alleviated some of these drawbacks, sample loading that can instead obviate tubings offers a potentially promising alternative but has been underexplored. To fill the gap, we introduce herein a droplet device that features a new Tubing Eliminated Sample Loading Interface (TESLI). TESLI integrates a network of programmable pneumatic microvalves that regulate vacuum and pressure sources so that successive sub-microliter samples can be directly spotted onto the open-to-atmosphere TESLI inlet, vacuumed into the device, and pressurized into nanoliter droplets within the device with minimal wastage. The same vacuum and pressure regulation also endows TESLI with cleaning and sample switching capabilities, thus enabling scalable processing of many samples in succession. Moreover, we implement a pair of TESLIs in our device to parallelize and alternate their operation as means to minimizing idle time. For demonstration, we use our device to successively process 44 samples into droplets-a number that can further scale. Our results demonstrate the feasibility of tubing-free sample loading and a promising approach for advancing droplet microfluidics.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Automation , Microfluidics/methods
15.
Anal Chem ; 94(26): 9372-9379, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35730588

ABSTRACT

Polymerase chain reaction (PCR)-based diagnostic testing is the gold standard method for pathogen identification (ID) with recent developments enabling automated PCR tests for point-of-care (POC) use. However, multiplexed identification of several pathogens in PCR assays typically requires optics for an equivalent number of fluorescence channels, increasing instrumentation's complexity and cost. In this study, we first developed ratiometric PCR that surpassed one target per color barrier to allow multiplexed identification while minimizing optical components for affordable POC use. We realized it by amplifying pathogenic targets with fluorescently labeled hydrolysis probes with a specific ratio of red-to-green fluorophores for each bacterial species. We then coupled ratiometric PCR and automated magnetic beads-based sample preparation within a thermoplastic cartridge and a portable droplet magnetofluidic platform. We named the integrated workflow POC-ratioPCR. We demonstrated that the POC-ratioPCR could detect one out of six bacterial targets related to urinary tract infections (UTIs) in a single reaction using only two-color channels. We further evaluated POC-ratioPCR using mock bacterial urine samples spiked with good agreement. The POC-ratioPCR presents a simple and effective method for enabling broad-based POC PCR identification of pathogens directly from crude biosamples with low optical instrumentation complexity.


Subject(s)
Point-of-Care Systems , Urinary Tract Infections , Bacteria/genetics , Humans , Immunomagnetic Separation , Polymerase Chain Reaction , Urinary Tract Infections/diagnosis
16.
Front Bioeng Biotechnol ; 10: 826694, 2022.
Article in English | MEDLINE | ID: mdl-35425764

ABSTRACT

Candida auris is an emerging multidrug-resistant fungal pathogen that can cause severe and deadly infections. To date, C. auris has spurred outbreaks in healthcare settings in thirty-three countries across five continents. To control and potentially prevent its spread, there is an urgent need for point-of-care (POC) diagnostics that can rapidly screen patients, close patient contacts, and surveil environmental sources. Droplet magnetofluidics (DM), which leverages nucleic acid-binding magnetic beads for realizing POC-amenable nucleic acid detection platforms, offers a promising solution. Herein, we report the first DM device-coined POC.auris-for POC detection of C. auris. As part of POC.auris, we have incorporated a handheld cell lysis module that lyses C. auris cells with 2 min hands-on time. Subsequently, within the palm-sized and automated DM device, C. auris and control DNA are magnetically extracted and purified by a motorized magnetic arm and finally amplified via a duplex real-time quantitative PCR assay by a miniaturized rapid PCR module and a miniaturized fluorescence detector-all in ≤30 min. For demonstration, we use POC.auris to detect C. auris isolates from 3 major clades, with no cross reactivity against other Candida species and a limit of detection of ∼300 colony forming units per mL. Taken together, POC.auris presents a potentially useful tool for combating C. auris.

17.
Lab Chip ; 22(5): 945-953, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35088790

ABSTRACT

The ability to detect and quantify HIV RNA in blood is essential to sensitive detection of infections and monitoring viremia throughout treatment. Current options for point-of-care HIV diagnosis (i.e. lateral flow rapid tests) lack sensitivity for early detection and are unable to quantify viral load. HIV RNA diagnostics typically require extensive pre-processing of blood to isolate plasma and extract nucleic acids, in addition to expensive equipment for conducting nucleic acid amplification and fluorescence detection. Therefore, molecular HIV diagnostics is still mainly limited to clinical laboratories and there is an unmet need for high sensitivity point-of-care screening and at-home HIV viral load quantification. In this work, we outline a streamlined workflow for extraction of plasma from whole blood coupled with HIV RNA extraction and quantitative polymerase chain reaction (qPCR) in a portable magnetofluidic cartridge platform for use at the point-of-care. Viral particles were isolated from blood using manual filtration through a 3D-printed filter module in seconds followed by automated nucleic acid capture, purification, and transfer to qPCR using magnetic beads. Both nucleic acid extraction and qPCR were integrated within cartridges using compact instrumentation consisting of a motorized magnet arm, miniaturized thermocycler, and image-based fluorescence detection. We demonstrated detection down to 1000 copies of HIV viral particles from whole blood in <30 minutes.


Subject(s)
HIV Infections , Nucleic Acid Amplification Techniques , HIV Infections/diagnosis , Humans , Point-of-Care Systems , RNA , RNA, Viral , Viral Load
18.
Lab Chip ; 22(3): 621-631, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35015012

ABSTRACT

The emergence and spread of multidrug resistant bacterial strains and concomitant dwindling of effective antibiotics pose worldwide healthcare challenges. To address these challenges, advanced engineering tools are developed to personalize antibiotic treatments by speeding up the diagnostics that is critical to prevent antibiotic misuse and overuse and make full use of existing antibiotics. Meanwhile, it is necessary to investigate novel antibiotic strategies. Recently, repurposing mono antibiotics into combinatorial antibiotic therapies has shown great potential for treatment of bacterial infections. However, widespread adoption of drug combinations has been hindered by the complexity of screening techniques and the cost of reagent consumptions in practice. In this study, we developed a combinatorial nanodroplet platform for automated and high-throughput screening of antibiotic combinations while consuming orders of magnitude lower reagents than the standard microtiter-based screening method. In particular, the proposed platform is capable of creating nanoliter droplets with multiple reagents in an automatic manner, tuning concentrations of each component, performing biochemical assays with high flexibility (e.g., temperature and duration), and achieving detection with high sensitivity. A biochemical assay, based on the reduction of resazurin by the metabolism of bacteria, has been characterized and employed to evaluate the combinatorial effects of the antibiotics of interest. In a pilot study, we successfully screened pairwise combinations between 4 antibiotics for a model Escherichia coli strain.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Pilot Projects
19.
Lab Chip ; 22(3): 476-511, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35048928

ABSTRACT

The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.


Subject(s)
Chlamydia Infections , HIV Infections , Nucleic Acids , Sexually Transmitted Diseases , Chlamydia Infections/diagnosis , HIV Infections/diagnosis , Humans , Patient Care , Point-of-Care Systems , Point-of-Care Testing , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/epidemiology , United States
20.
Small Methods ; 6(1): e2101254, 2022 01.
Article in English | MEDLINE | ID: mdl-35041266

ABSTRACT

The global threat of antibiotic resistance underscores critical but unmet needs for rapid antibiotic susceptibility testing (AST) technologies. To this end, droplet microfluidic-based single-cell AST offers promise by achieving unprecedented rapidity, but its potential for clinical use is marred by the capacity of testing one to few antibiotic conditions per device, which falls short from the required scale in clinically relevant scenarios. To lift the scalability constraint in rapid single-cell AST technologies, a new cascaded droplet microfluidic platform that can streamline bacteria/antibiotic mixing, single-cell encapsulation within picoliter droplets, incubation, and detection in a continuous, assembly-line-like workflow is developed. The scalability of the platform is demonstrated by generating 32 groups of ≈10 000 droplets with custom antibiotic conditions within a single device, from which a new statistics-based method is used to analyze the single cell data and produce clinically useful antibiograms with minimum inhibitory concentrations in ≈90 min for the first antibiotic, plus 2 min for each subsequent antibiotic condition. Potential clinical utility of this platform is demonstrated by testing three clinical isolates and eight urine specimens against four frequently used antibiotics, and 100% and 93.8% categorical agreements are achieved compared to laboratory-based results that became available after 48 h.


Subject(s)
Anti-Bacterial Agents , Microfluidics , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Microbial , Microbial Sensitivity Tests , Microfluidics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...